Efficient Programming Model & GPU Usage for
Scientific Computing.

TELECOM

Paris

LYT
QO fo,

N2: IP PARIS

Master Research and Innovation Project

Autumn 2023

Author
Isaie - CEA
Supervision
____________NeJ)
_, Télécom Paris






Contents

L Introduction — Context & PUIPOSE ...c.curirueiriieeirieieireieis ettt eaeaes 4
LA. The High Performance Computing CONEXt .........coeeuiureeuneureeeneereeeeeeneeiesseeeesessesesseeseseeees 4
LB. Beyond the Current SOIULION .......ccuoiurireierieiererieiciseeets ettt eaen 4
II. KoKkKkos-1S — A Proof-0f-COnCePLt ...c.cuveeuiiriciriiricireieieneieicieisteineiete et ssese e ssesesessesesaees 5
ILA. POTted FEALULIES .....coucreieieiniicecicieicieiete ettt e 5
ILB. Testing MethodOLOZY ....cccvvueviirecuiireeiniieieireeintieecireeeeeisesessete et iseseseseesessesessessesesnesenaees 5
III. Results — Benchmarking & ANalysis .........cccoocuininininciniincccceccececeeeeseeee e 6
[I.A. Comparing IMplementations ..........c.cocereureeureerineereseneereeereee st sssseesssseseenes 6
ILB. LAYOUL STUAY ..eeuieiiiieieieis ettt sttt 6

IV, CONCIUSION ..ottt 10

IV.A. Viability of KOKKOS-TS ....cceurrurieririiirieiriisisieiseeeie ittt naeenes 10
IV.B. WHAL NEXE 7 oottt sttt ettt 10

V. APPEIAICES ..ottt ettt 11
V.A. Rust / C++ SImPle PIOZIAIM ....c.cvvuvviiricireiciieicirccineeeieeeseeesneieeetsesetsesesesessessesessesesesenns 11
V.B. Layout and Stride Definitions ........cocvereereeeineiricinieineineneieieseeeee e ssesessesseaees 11
V.C. Serial L1 Cache MiSs RALES ......cccuerueruerueieriierieienieieienense e ssessessessessesnens 12

BIDLIOGIAPIY ..ocvevuiniieciciicireteectcieect ettt sttt bbbttt sttt 13



I. Introduction — Context & Purpose

I.A. The High Performance Computing Context

High Performance Computing (HPC) programming poses various challenges, some of which
can be traced back to the hardware used in that domain. Besides traditional issues linked
to parallelism, the programmer also has to deal with diverse, heterogeneous architectures.
Ensuring portability of a HPC code across clusters is far from trivial as projects relying on
GPU usage do so through platform-specific frameworks (e.g. CUDA for Nvidia GPUs). Conse-
quently, these code bases require significant refactors when built for a different machine.

The question is the following: What can we do to ensure code portability across existing,
and even future architectures? To take it a step further, how can we ensure not only compat-
ibility, but also portability of performance?

Currently, one answer to those questions is the Kokkos programming model and library
[1]. Kokkos is defined as a C++ Performance Portability Programming Model. The model
approaches the problem by providing abstractions over two aspects of the code: parallel
execution and data management.

I.B. Beyond the Current Solution

As mentioned above, Kokkos is both a programming model and an implementation of it.
However, the implementation is exclusive to C++. This makes sense from a practical perspec-
tive, as the HPC ecosystem is far more advanced in C++ than in any other language. In our
case though, we would like to work, at least partially, with Rust.

The Rust programming language provides very interesting features in the HPC context,
most notably easy property checking and fearless concurrency. Additionally, Rust’s defensive
approach for memory handling - the ownership system [2] - seems compatible, if not
complementary to the Kokkos programming model.

With this in mind, the questions we seek to answer are the following:

+ Can the Kokkos programming model be implemented in Rust?
« If it can be, would this implementation be viable?

The answer to the first question is non-trivial as Rust comes with much stricter compilation
rules than C++, and the current Kokkos implementation makes heavy use of C++-exclusive
features (most notably templates). The second question is very much similar as it requires us
to define viability and test for it.



II. Kokkos-rs — A Proof-of-Concept

II.A. Ported Features

While the project first started with the data management aspect as the main focus, it turned
into a Proof-of-Concept (PoC) [3], with all basic elements needed to write a simple parallel
computational kernel. The following features were implemented:

+ Views — This is the main abstraction Kokkos provides in terms of data managment and was
the first feature to be implemented.

« parallel_for statement — This is the most basic parallel routine implemented by Kokkos,
which corresponds to the parallelization of a for loop with no returned value.

« Multiple CPU backends - Kokkos supports multiple parallelization backends to ensure
versatility and portability, making the implementation of this feature an essential part for
the Proof-of-Concept.

The main issue encountered, which incidentally is the main issue of Rust for HPC, is the
lack of support for GPGPU in pure Rust. Beyond the fact that this gates the usage of a key
component of most current architectures, this also creates issues with genericity if it were to
be implemented: it would need to rely on interfacing or source-to-source translation.

Aside from this, the implementation was pretty straightforward. C++ templates were
translated as generics implementing custom traits, function signatures were adjusted the same
way backends were handled, through Cargo features, i.e. conditional compilation [4]. This
results in a similar user-experience between the Rust and C++ libraries, although their inner-
workings greatly differ.

The PoC currently supports three backends, including the fallback one:

« rayon — makes use of the rayon crate [5] for parallelization

+ threads — makes use of standard library threads [6] for parallelization

« serial - executes the code using a regular serial statement. This is the fallback implemen-
tation.

For more details on implementations, refer to the PoC documentation [7]. A simple program
implementation using both the PoC and the original library can be found in Section V.A.

IL.B. Testing Methodology

In order to test the viability of the model in Rust, multiple kinds of benchmarks were written:

« BLAS kernels [8], written both using the PoC and the C++ implementation. Note that
the C++ benchmarks were not meant to be optimized, but rather equivalent to their Rust
counterparts.

« Abstraction cost evaluations: This includes benchmarking basic operations on Views as well
as comparing hardcoded kernels to ones written using the library:.

+ A study of the model using the PoC on simple problems that Kokkos tackles.

Beyond plain performance, a Kokkos-rs crate would need to meet other criteria to be consid-
ered viable. This would include, for example, user-friendliness as well as problem coverage of
similar level to the original Kokkos C++ implementation.



III. Results - Benchmarking & Analysis

III.A. Comparing Implementations

Using the BLAS kernels with fixed-size vectors and matrices, the following times were
recorded:

Benchmark Data size | Kokkos-rs | Kokkos (C++) [ Hardcoded (Rust)
AXPY 220 2.0349ms | 0.182ms -

GEMV 212 15.616ms | 3.571ms -

GEMM 210 212.97ms | 169.8ms 173.50ms

Times presented are the average values over 100 samples. They were measured on parallel
execution over 8 threads (no hyperthreading), using rayon as the Kokkos-rs backend and
OpenMP for the C++ version.

The first observation to make is that, although the original C++ library is faster, times are
not magnitudes apart. Additionally, the difference seems less exacerbated for kernels with a
heavier workload: Execution time is shorter tenfold for AXPY while it barely cuts down 25%
for GEMM.

This could indicate a lack of optimization or performance difference between the dis-
patching & scheduling code of each implementation. rayon in particular isn’t known for being
fast at those tasks, which could be a side-effect of its work-stealing model. The granularity
over parallel tasks probably also varies between the two models, but the importance of that
also depends on the workload.

The hardcoded version of the GEMM kernel clearly indicates that similar performance
can be achieved with Rust’s parallelization, confirming the previous observations related to
optimization.

One fundamental pitfall of the current PoC implementation is its usage of generic over
specific code: In C++, templates can be used in order to generate specific code at compile time.
Conditional compilation in Rust only covers basic use-cases (think IFDEF), which means that
most of the code needs to use generic types implementing custom traits (think interfaces).
This comes at a cost in performance that would be interesting to assess, whether for the PoC
or for the language as a whole.

III.B. Layout Study

In order to assess the relevance of a Kokkos-rs implementation, we decided to realize
benchmarks on a common case where the Kokkos library achieves performance through its
approach. By measuring performance on the GEMM benchmark, using different memory
layout setups, over a range of different data sizes, it was possible to highlight the phenomenon
that Kokkos’ abstractions mean to tackle.

The GEMM kernel corresponds to the following operation («, 5 scalars, A, B, C' matrices):
C=aA.B+pC



Essentially, the bottleneck of the operation is the matrix-matrix product A.B, and its
completion speed can be heavily dependent on the underlying memory layout of both
matrices. Detailed definitions of both layout and stride can be found in Section V.B.

mpte——p>- | ()

Figure 1: Matrix-matrix product [9].

In the case of CPU execution, we want elements of an A row to be stored contiguously,
while we want elements of a B column to be stored contiguously. This is achieved by storing
matrices A and B using respectively a LayoutRight and LayoutLeft.

The following performances were measured using 1024 by 1024 matrices of f64. Note
that the hardware used to run these benchmarks is different from the hardware used in the
previous section.

Setup | A layout B layout Laverage
Ideal | Layout::Right | Layout::Left | 152.83ms

Usual | Layout::Right | Layout::Right | 245.52ms

Worst | Layout::Left | Layout::Right | 371.09ms

Significant speedup is observed when using the ideal setup over the usual one. These effects,
are observable on both CPU and GPU, but further exacerbated on GPU. We can also note as



a rule of thumb that the ideal setup on CPU is the worst on GPU, and vice versa, hence the
importance of layout abstraction provided by Kokkos.

On CPU, this change in performance can be attributed to cache usage. The following graph

shows the speed loss when using a regular setup compared to the ideal one, over a range of
different matrix sizes:

GEMM: Speed Gain = f(Data Size)
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Figure 2: Speed variation between layouts.

We can observe a direct correlation between performance drops and thresholds where the size
of matrix B exceeds total cache size. As a reference, those benchmarks were executed using
an AMD Ryzen 5 7600x with the following characteristics:

« 6 Cores, 12 Threads

« Caches (NUMA system):
» L1d: 32KB per core (192KB total)
» L2: 1024KB per core (6MB total)
» L3: 32MB total

We can compute B’s size according to its dimensions. Note that benchmarks were done using
matrices of f64, meaning each element has a size of 23 bytes. We ignore other elements as their
size is negligible compared to the size of B. Still, note that they contribute to cache saturation
when B’s size equals a given cache’s capacity.

N 24 25 26 27 28 29 210 211 212
# of elements | 28 | 210 | 212 |2l 216 218 | 920 | 922 924
Size 2KB | 8KB | 32KB | 128KB | 512KB | 2MB | 8MB | 32MB | 128MB

The dimension thresholds are the following:



« 25/26: Matrix B (8KB/32KB) equals L1 per-core capacity (32KB).

. 27/28: Matrix B (128KB/512KB) exceeds L1 total capacity (192KB).
. 29/210: Matrix B (2MB/8MB) exceeds L2 total capacity (6MB).

. 219/21: Matrix B (8MB/32MB) equals L3 total capacity (32MB).

The first threshold does not appear on the speed variation measurements, but we can profile
the GEMM kernel and fetch L1 cache miss rates using perf. Doing so over a range of matrix
sizes yields the following results:

GEMM: L1 Cache Miss-Rate Evolution = f(Data Size)
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Figure 3: L1 cache miss rate.

This highlights the aforementioned threshold. Under it, the miss rate was essentially identical
for both layouts. However, when B doesn’t entirely fit in the L1 cache, the miss rates diverge
as the usual layout generates much more misses. This is due to the lack of locality of
reference induced by a higher stride between two consecutive elements of a same
column.

Two additional observations can be made, but have not been explored:

« Miss rates seem to reach an upper bound past some point.
« The concave up curve made by the best layout’s rates isn’t due to noise or error in sampling,
it is an actual tendency.

The equivalent measurements have been made for a sequential execution of the GEMM kernel
and can be found in Section V.C.



IV. Conclusion

IV.A. Viability of Kokkos-rs

The following can be concluded from the implementation process as well as results from the
testing phase:

The Kokkos programming model is compatible with Rust: Backend abstractions as well as
data management abstractions can be implemented using the language. Moreover, the model
benefits from mutability checks and struct-like enums for type definition.

Similar level of performance can probably be achieved by a Rust implementation, the main
challenge being the usage of generic code (generic types implementing traits) over specific
code (templates).

The lack of GPU support for Rust code inherently limits the level of portability Kokkos-rs
could offer at the moment.

However, multiple features being considered for implementation or stabilization in the lan-
guage could prove useful for a Kokkos-rs crate. Most notably:

Stabilization of the Fn* traits [10] would allow to define kernels as structures (functors),
hence making the fallback process a type conversion implementation.

Stabilization of impl Trait in type aliases [11] would greatly simplify the code and improve
refactoring capabilities, hence make supporting additional backends easier.

IV.B. What Next ?

A number of possibilities emerge for any continuation of this Proof-of-Concept:

Develop further the Proof-of-Concept by adding more existing Kokkos features. Most
notably, tiling, team-based execution policies, or other parallel statements. Optimization
could also be considered as the current implementation is closer to tinkering than anything
else.

Use the CXX crate [12] for interoperability between the Proof-of-Concept and the original
C++ library. Such a usage would still be useful in the context of HPC programming as our
main interest is property checking, not thread safety of kernels.

Extend the Proof-of-Concept to support hybrid tools, e.g. cudarc [13]. This would allow GPU
targeting, although this is partially dependent on feature stabilization and doesn’t solve the
fallback issue.



V. Appendices

V.A. Rust / C++ Simple Program

These code snippets correspond to an implementation of the third level of Basic Linear Algebra
Subprograms (BLAS) functionality: GEMM, a general matrix multiplication [8].

1 // build the exec policy
2 let execp = ExecutionPolicy {

3 space: ExecutionSpace::DeviceCPU,

4 range: RangePolicy::RangePolicy(0..length),

5 schedule: Schedule::Static,

6 }

7

8 // C = alpha * A * B + beta * C

9 parallel for(

10 execp,

11 |arg: KernelArgs<l>| match arg { // using an enum as kernel argument

12 KernelArgs::Index1D(1i) => {

13 for j in 0..length {

14 let ab ij: f64 = (0..length)

15 .map(|k| aa.get([i, k]) * bb.get([k, j1))
16 sum();

17 let val: f64 = alpha * ab _ij + beta * cc.get([i, j1);

18 cc.set([i, j1, val);

19 }

20 }

21 _=> unimplemented! (),

22 }) .unwrap();

1 ++ l!
2 // C=alpha * A * B + beta * C

3  Kokkos::parallel for(

4 "GEMM kernel", // kernel name

5 length, // Kokkos defines a minimal signature through templating/overloading
6 KOKKOS LAMBDA(const uint64 t i) {

7 for (uint64 t j = 0; j < length; j++) {

8 double AB ij = 0.0;

9 for (uint64 t k = 0; k < length; k++) { AB_ij += A(i,k) * B(k,j); }
10 // assign to C

11 C(i, j) = alpha * AB_ij + beta * C(i, j);

12 }

13 1)

V.B. Layout and Stride Definitions

What Kokkos calls layout refers to “the mapping from a logical multidimensional index (i, j, k,
...) to a physical memory offset”. The mapping process is characterized by the stride associated
to each dimension/index.

The stride [14], in our context, refers to the number of memory units between the
beginning of two successive elements along one index. For example, the space between



Arr[i fixed, j, k fixed] and Arr[i fixed, j + 1, k fixed] is the stride associated to
index j; Arr’s layout is defined by three strides, one for each dimension.

Kokkos provides three main layouts, which strict definitions rely on the notion of stride:

+ LayoutLeft: Lowest stride for the first index, increasing stride as index increases.

« LayoutRight: Highest stride for the first index, decreasing stride as index increases.

» LayoutStride: A custom layout that allows the user to control the exact way data is
positioned in memory. Note that this allows creation of sparse data structures.

A more intuitive approach to understand the first two definitions is their 2D interpretations:

« LayoutLeft: “Column-major” layout where two successive column elements are stored
contiguously in memory (ignoring alignment-related offset). This is how Fortran operates.

« LayoutRight: “Row-major” layout where two successive row elements are stored contigu-
ously in memory (ignoring alignment-related offset). This is how C, C++, and Rust operate.

V.C. Serial L1 Cache Miss Rates

GEMM: L1 Cache Miss-Rate Evolution = f(Data Size)
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Figure 4: Serial L1 cache miss rate.
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